New Results from CMS

Richard Cavanaugh, Fermilab / UIC LHC Physics Center co-Coordinator

Fermilab Wine & Cheese Seminar 16 March, 2012

http://lpc.fnal.gov/

Datasets and Reconstruction

Datasets and Reconstruction Fermilab

Excellent Performance

- More than 5 fb-1 data collected @ 7 TeV
- € Peak Lumi 3.5×10³³ cm⁻²s⁻¹
- Data taking efficiency: 90%
- Data certified for analysis: 90%
- Mean pileup: 10

Datasets and Reconstruction

Excellent Performance

- More than 5 fb-1 data collected @ 7 TeV
- Peak lumi 3.5×1033 cm-25-1
- Data taking efficiency: 90%
- Data certified for analysis: 90%
- Mean pileup: 10

Particle Flow in CMS

- Aim to reco. EVERY particle in event
- · Exploit detector redundancy, whilst avoiding double counting
- · Provides global event description • via list of individual particles
- € Huge improvements to T, jets, & MET
- Improvements to isolation, PU subt.

Set the Stage for PF: Jet Composition Fermilab UIC University of Illinois at Chicago

Set the Stage for PF: Jet Composition Fermilab UC University of Illinois at Chicago

Charged particles: ~60%

Mostly charged pions, kaons and protons, but also some electrons and muons

- Charged particles: ~60%
- Tracking
- Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons: ~25% ECAL
 - Mostly from π° 's, but also some genuine photons (brems,...)

- · Charged particles: ~60%
- Tracking
- · Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons: ~25% ECAL
 - Mostly from π° 's, but also some genuine photons (brems,...)
- · Long-lived neutral hadrons: ~10%
 - · Ko, neutrons

- Charged particles: ~60% Tracking

 - Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons: ~25% ECAL
 - · Mostly from πo's, but also some genuine photons (brems,...)
- Long-lived neutral hadrons: ~10%
 - · Ko, neutrons
- Short-lived neutral hadrons, "Vo's": ~5% Tracking

- Charged particles: ~60% Tracking
 - · Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons: ~25% ECAL
 - · Mostly from πo's, but also some genuine photons (brems,...)
- Long-lived neutral hadrons: ~10% HCAL
 - · Ko, neutrons
- Short-lived neutral hadrons, "Vo's": ~5% Tracking

Full use of Detector Information significantly improves physics object performance

Particle Flow Algorthm

First Associate Hits within Each Detector

Particle Flow Algorthm

Then Link Across Detectors

Particle Flow Algorthm

Finally Apply Particle ID & Separation

"Clean" the Event During Reconstruction!

• Find and "remove" muons (σ_{track})

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$)

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$])
- Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}])

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$])
- Find and "remove" converted photons ($min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" charged hadrons (σ_{track})

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$])
- Find and "remove" converted photons (min[σ_{track} , σ_{ecal})
- Find and "remove" charged hadrons (σ_{track})
- · Find and "remove" Vo's (σ_{track})

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$])
- Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}])
- Find and "remove" charged hadrons (σ_{track})
- · Find and "remove" Vo's (σ_{track})
- Find and "remove" photons (σ_{ECAL})

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$])
- Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}])
- Find and "remove" charged hadrons (σ_{track})
- · Find and "remove" Vo's (σ_{track})
- Find and "remove" photons (σ_{ECAL})
- · Left with neutral hadrons (10%) (σ_{HCAL} + fake)

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}])
- Find and "remove" charged hadrons (σ_{track})
- · Find and "remove" Vo's (σ_{track})
- Find and "remove" photons (σ_{ECAL})
- · Left with neutral hadrons (10%) (σ_{HCAI} + fake)
- Use above list of Reconstructed Particles to describe the entire event!

CMS

Jet & MET Reconstruction

10²

p_{_} [GeV/c]

0

Standard Model

W Charge Asymmetry

- ud -> W+; du -> W-
 - 1st quark from valence
 - 2nd quark from sea
- pp collider: more W+ then W-

$$\mathcal{A}(\eta) = \frac{d\sigma/d\eta(W^+ \to \ell^+\nu) - d\sigma/d\eta(W^- \to \ell^-\bar{\nu})}{d\sigma/d\eta(W^+ \to \ell^+\nu) + d\sigma/d\eta(W^- \to \ell^-\bar{\nu})}$$

B Physics

R Physics

Bs -> 44

• SM Prediction: Br = (3,2±0,2)x10-9

Dhysics

- SM Prediction: Br = (3,2±0,2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample

- SM Prediction: Br = (3.2±0.2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample
- · Blind analysis

- SM Prediction: Br = (3,2±0,2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample
- · Blind analysis

- SM Prediction: Br = (3,2±0,2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample
- Blind analysis
 p-value for B hypothesis:

Bs -> 44

- SM Prediction: Br = (3,2±0,2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample

- Blind analysis
 p-value for B hypothesis: 0.06
 p-value for S+B hypothesis: 0.71

Bs -> 44

- SM Prediction: Br = (3,2±0,2)×10-9
- B+ \rightarrow J/ ψ K+ Normalisation Sample

- Blind analysis
 p-value for B hypothesis: 0.06
 p-value for S+B hypothesis: 0.71

Br(Bs → µµ) < 7.7×10-9 at 95%CL

CMS

TOP

$$\sigma_{t-\text{ch.}} = 70.2 \pm 5.2 (\text{stat.}) \pm 10.4 (\text{syst.}) \pm 3.4 (\text{lumi.}) \text{ pb}$$

 $|V_{\rm tb}| = 1.04 \pm 0.09$ (exp.) ± 0.02 (th.)

Single top

- · Dominant signature
 - 1 central isolated lepton
 - 1 b-jet + 1 forward recoil jet
- Main backgrounds
 - Multijets: fit MET spectrum with template from lepton sideband
 - W+jets: re-scale discriminator output from MLVb sideband

Leaving (re)discovery phase; precision measurements just around the corner!

12

16.03.20

708-22-022

$B(t \rightarrow Wb)/B(t \rightarrow Wq)$

- Fully data driven measurement
 - b-tagging, mis-tag
 efficiencies via QCD sample
 - Num reconstructed t→Wq estimated from lept-jet inv. mass spectrum

TOP-11-015 TOP-11-016

Top Mass

TOP-11-016

Top Mass

Kinematic fit with ideogram
 Like method

TOP-11-016

Top Mass

- Kinematic fit with ideogram
 Like method
 - combine event-by-event likelihood

TOP-11-016

Top Mass

- Kinematic fit with ideogram like method
 - combine event-by-event likelihood
- Lepton + Jets channel
 allows in-situ calibration
 of light quark JES from W->99' Leg

TOP-11-016

- Kinematic fit with ideogram like method
 - combine event-by-event likelihood
- Lepton + Jets channel
 allows in-situ calibration
 of light quark JES from W->99' Leg

Number of permutations / 0.05

TOP-11-016

Top Mass

- Kinematic fit with ideogram like method
 - combine event-by-event likelihood
- Lepton + Jets channel
 allows in-situ calibration
 of light quark JES from W->99' Leg

	CMS Prelimi	nary,√s=7 TeV					
	Tevatron 2011 combination arXiv:1107.5255v3 up to 5.8/fb				173.2 ± 0.6 ± 0.8 (val. ± stat. ± syst.)		
	CMS combin up to L= 4.9/fb	nation	•••		172.6 ± 0.4 (val. ± stat. ± sy		
	CMS 2011 d PAS-TOP-11-016		-	→	173.3 ± 1.2 ± 2.5 (val. ± stat. ± syst.)		
	CMS 2011 µ: PAS-TOP-11-015				172.6 ± 0.4 (val. \pm stat. \pm sy		
	CMS 2010 I- PAS-TOP-10-009			→	173.1± 2.1± 2.7 (val.± stat.± syst.)		
	CMS 2010 d JHEP 07 (2011) (-	175.5 ± 4.6 ± 4 (val.± stat.± syst.)				
	150	100	470	100	100		
140	150 160		170	180 [190 VI_top (Ge	200 eV/c²)	
				δ_{m_t} (0	GeV) ($\delta_{ m IES}$	

	o_{m_t} (GeV)	$o_{ m JES}$
Calibration	0.15	0.001
<i>b</i> -tagging	0.17	0.002
b-JES	0.66	0.000
p_T - and η -dependent JES	0.23	0.003
Jet energy resolution	0.21	0.003
Missing transverse energy	0.08	0.001
Factorization scale	0.76	0.007
ME-PS matching threshold	0.25	0.007
Non- $t\bar{t}$ background	0.09	0.001
Pile-up	0.38	0.005
PDF	0.05	0.001
Total	1.18	0.012

Number of permutations / 0.05

Testing pQCD in ttbar!

Fermi ab inois

Good agreement found for all quantities studied

W helicity in ttbar

 Measure θ*, angle between lepton and b (W rest frame)

W helicity in ttbar

- Measure θ*, angle between lepton and b (W rest frame)
- Distribution reflects 3 possible W polarisations

W helicity in ttbar

- Measure θ^* , angle between lepton and b (W rest frame)
- Distribution reflects 3 possible W polarisations
 - · Fo = 0.698,

FL = 0.301,

FR = 4.1x10-4

W helicity in ttbar

- Measure θ^* , angle between lepton and b (W rest frame)
- Distribution reflects 3 possible W polarisations
 - · Fo = 0.698,

FL = 0.301,

FR = 4.1x10-4

$$F_L = 0.393 \pm 0.045 (\text{stat.}) \pm 0.029 (\text{syst.})$$

 $F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$

W helicity in ttbar

- Measure θ^* , angle between lepton and b (W rest frame)
- Distribution reflects 3 possible W polarisations
 - · Fo = 0.698,
 - FL = 0.301,
 - FR = 4.1x10-4
- Anomalous twb couplings lead to deviations

$$F_L = 0.393 \pm 0.045 \text{(stat.)} \pm 0.029 \text{(syst.)}$$

$$F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$$

- Tevatron sees a possible differential dependency on charge asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider!

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider!

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider!

Top Charge Asymmetry

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider!

TOP

Top Charge Asymmetry

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider!

TOP

 $\mathbf{A}_{_{\mathrm{C}}}$

708-22-030

Top Charge Asymmetry

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider! • Fair agreement between data and theory after unfolding

 $0.003 \pm 0.004 \text{ (stat.)}$ Uncorrected $0.001 \pm 0.005 \text{ (stat.)}$ **BG-subtracted** $0.004 \pm 0.010~(stat.)~\pm 0.012~(syst.)$ Final corrected 0.0115 ± 0.0006

Theory prediction (SM)

AC Physics Center

708-22-030

 $0.004 \pm 0.010~{
m (stat.)}~\pm 0.012~{
m (syst.)}$

 0.0115 ± 0.0006

Tevatron & top

LHC

‡ Fermilab University of Illinois at Chicago

AC Physics Center

- Tevatron sees a possible differential dependency on charge asymmetry

 Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$
- Crucial difference at LHC: gluon collider! • Fair agreement between data and theory after unfolding

Uncorrected

BG-subtracted

Final corrected

Theory prediction (SM)

Indirect searches

- MH < 169 GeV @ 95% CL (standard fit)
- MH < 143 GeV @ 95% CL (before LHC)

Direct searches

- · LEP: MH > 114.4 GeV at 95% CL
- Tevatron: MH < 147 GeV at 95% CL

SM Higgs favoured at low mass, above the LEP limit

independent channels

mass range 110-600 GeV

Expected combined 95% exclusion: 114.5 to 543 GeV

Exclusion sensitivity at LEP lower limit

H to YY

- € Small BR: ~2×10-3
- Two isolated high pt photons

 VBF channel has two jets from quarks

H to YY

- Small BR: ~2x10-3
- Two isolated high pT photons
 VBF channel has two jets from quarks
- · Narrow mass peak
- e very good mass resolution 1-2%

LHC Physics Center

H to YY

- · Signature: small mass peak over large smoothly decreasing background
 - · Irreducible: 24 QCD production
 - · Reducible: Y+jet with additional fake Y, DY with e's faking y's
- Studied mass range: 110-150 GeV

Main Update

- MVA analysis, inputs very similar to published cut \$\pm\$ count analysis
 HIG-11-033, arXiv:1202.1487
- Goal: optimise use of high quality events
 - exploit detector perf. and kinematics
- MVA based Photon ID and MVA based diphoton event classification
- Four non-VBF classes, based on MVA output
- One VBF class with dijet tagged events
 - · Lower cut on diphoton event class.

Main Update

- MVA analysis, inputs very similar to published cut & count analysis
 - HIG-11-033, arXiv:1202.1487
- · Goal: optimise use of high quality events
 - exploit detector perf. and kinematics
- MVA based Photon ID and MVA based diphoton event classification
- · Four non-VBF classes, based on MVA output
- One VBF class with dijet tagged events
 - e Lower cut on diphoton event class.

Background Modelling

- e polynomial (3rd to 5th order) fit to
- Bias
 - measured with MC toys
- found to be less than 20% • Cross check

 - sliding window background model • yields consistent with limits

HIG-12-001

Exclusion Limits

- · Expected 95% CL exclusion
 - @ 1.2 to 2.0 x SM
- · Excluded at 95% CL
 - · [110.0, 111.0]
 - · [117.5, 120.5]
 - · [128.5, 132.0]
 - · [139.0, 140.0]
 - · [146.0, 147.0]
- · Cut based analysis consistent results
- · Cross check MVA also consistent

Results

- Largest excess at 125 GeV
- Global significance 1.60

arXiv:1202.4083 HIG-11-029

Low mass: H to TT

● No narrow mass peak: σ(m) ≈ 20%

- · Also important for MSSM Three different sub-channels:
 - · VBF production: 2 forward jets Boosted: one jet pT > 150 GeV • 99-fusion: 0 or 1 additional jets

Two new channels added

- H -> TT -> μμ: (HIG-12-007)
- · large bkg from Z->44
- WH -> LTT -> еµт, µµт: (HIG-12-006) • also sensitive to WH -> WWW

 - · use same sign eμ, μμ

arXiv:1202.1489 HIG-11-024

H -> WW -> 212V

- Most sensitive channel around 2xMw
- No Narrow mass peak: $\sigma(m) \approx 20\%$
- Two high pT isolated leptons+MET · Main backgrounds
- WW (irreducible)
- · Z+jets, WZ, ZZ, tt, W+jets

arXiv:1202.1489 HIG-11-024

H -> WW -> 212v

- Most sensitive channel around 2xMw
- No Narrow mass peak: $\sigma(m) \approx 20\%$
- Two high pT isolated leptons+MET · Main backgrounds
 - WW (irreducible)
 - · Z+jets, WZ, ZZ, tt, W+jets

scalar boson + V-A structure of W decay, favours small opening angle between leptons

arXiv:1202.1489 HIG-11-024

H -> WW -> 212v

- Most sensitive channel around 2xMw
- No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET
- · Main backgrounds
 - WW (irreducible)
 - · Z+jets, WZ, ZZ, tt, W+jets

- Most sensitive channel around 2xMw
- No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET
- · Main backgrounds
 - WW (irreducible)
 - · Z+jets, WZ, ZZ, tt, W+jets

scalar boson + V-A structure of W decay, favours small opening angle between leptons

Analysis

- · Background estimation crucial
 - Main bkgs estimated from data
- · Analysis performed in
 - © 0,1,2 jet multiplicity bins
 - ee, μμ, eμ flavour bins
 - Cut & count as well as MVA
- Optimised as a function of Mh
- · Lepton trigger and ID down to 10 GeV

arXiv:1202.1489 HIG-11-024

H -> WW -> 212v

- Most sensitive channel around 2xMw • No Narrow mass peak: $\sigma(m) \approx 20\%$
- Two high pT isolated leptons+MET
- · Main backgrounds
 - WW (irreducible)
 - · Z+jets, WZ, ZZ, tt, W+jets

scalar boson + V-A structure of W decay, favours small opening angle between leptons

Analysis

- · Background estimation crucial
 - Main bkgs estimated from data
- · Analysis performed in
 - o,1,2 jet multiplicity bins
 - e ee, μμ, eμ flavour bins
 - Cut & count as well as MVA
 - Optimised as a function of Mh
 - · Lepton trigger and ID down to 10 GeV

arXiv:1202.1489 HIG-11-024

H -> WW -> 212v

- Most sensitive channel around 2xMw
- No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET
- · Main backgrounds
 - WW (irreducible)
 - · Z+jets, WZ, ZZ, tt, W+jets

scalar boson + V-A structure of W decay, favours small opening angle between leptons

Analysis

- · Background estimation crucial
 - Main bkgs estimated from data
- · Analysis performed in
 - o,1,2 jet multiplicity bins
 - e ee, μμ, eμ flavour bins
 - Cut & count as well as MVA
 - Optimised as a function of Mh
 - · Lepton trigger and ID down to 10 GeV

- Main backgrounds estimated from data

stage	WH (120)	WH (120)	data	all bkg.	WZ	ZZ	$top+Z/\gamma^*$
	$H \rightarrow \tau \tau$	$H \rightarrow WW$			$\rightarrow 3\ell\nu$	$ ightarrow 4\ell$	_
3-lepton preselection	2.1 ± 0.0	3.5 ± 0.1	950	968.3 ± 11.9	482.9 ± 1.8	78.4 ± 0.9	348.0 ± 9.7
min-MET > 40 GeV	1.0 ± 0.0	1.8 ± 0.1	244	270.5 ± 4.4	208.2 ± 1.1	7.9 ± 0.3	54.5 ± 4.3
Z removal	0.4 ± 0.0	1.0 ± 0.1	40	47.9 ± 3.1	15.9 ± 0.4	0.7 ± 0.1	31.3 ± 3.1
top veto	0.1 ± 0.0	0.6 ± 0.1	12	14.2 ± 1.3	8.8 ± 0.4	0.4 ± 0.1	4.9 ± 1.3
$\Delta R_{\ell^+\ell^-} \& m_{\ell\ell}$	0.1 ± 0.0	0.5 ± 0.1	7	8.4 ± 0.9	5.7 ± 0.2	0.3 ± 0.1	2.6 ± 0.9

Summary & Outlook

- Higgs Boson search in 11 independent
- Expected 95% CL exclusion:
 - M(h) in [113.5, 543] GeV
 - Observed 95% CL exclusion
 - M(h) in [127.5, 600] GeV • If the SM Higgs exists, at 95% CL then
 - · M(h) in [114.5, 127.5] GeV

Summary & Outlook

- Observe an excess around 125 GeV. • Significance: Local 2.80, Global
- 0.80 [110, 600] \$ 2.10 [110, 145] • Excess consistent with

 - a background fluctuation
- e a SM Higgs Boson near 125 GeV mass
- More data needed to investigate origin • 2012 LHC will run at 8 TeV should be able to discover or exclude

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Large

SM backgrounds

Small

Sensitivity to strongly produced SUSY

The Strategy

- Focus on signatures (topologies), use different approaches/ observables
 - e alpha_T, "Razor", HT, MHT, ...
- · Established many different techniques to derive backgrounds
 - jet smearing & rebalancing, ABCD, fakeable-object technique to estimate fake lepton rates, generic properties of lepton pT spectra, generic properties of SM spectra
- · Cross check, cross check, cross check...

$$R \equiv \frac{M_T^R}{M_R} \qquad M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$

Search with Razor

- Both R2 & MR observed to fall exponentially
- · Background strategy
 - fit exponential to data in Control Regions
 - extrapolate into Signal Regions

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

(E10.0)\211

CMS Preliminary VS=7 TeV

505-12-005

single lepton search

• Two data-driven methods:

· Lepton Spectrum (LS) o uses pr(1) to predict pr(v); binned in HT and MET

· Lepton Projection (LP)

• uses W polarisation variable; binned in HT and ST = PT(L)+MET

• W polarised in W+jets W not polarised in SUSY

35

Two data-driven methods:

· Lepton Spectrum (LS)

pr(1) to predict pr(v); ed in HT and MET Projection (LP) s W polarisation variable; ned in HT and ST = PT(L)+MET polarised in W+jets not polarised in SUSY

LHC Physics Center

- Two data-driven methods
 - Cut & count:
 - pT(ll) used to predict pT(vv); binned in HT # MET

- e Two data-driven methods
 - Cut & count:
 - pT(II) used to predict pT(vv); binned in HT # MET

CMS

SUSY

- Two data-driven methods
 Cut \$ count:
 - pT(LL) used to predict
 pT(vv); binned in HT
 MET

CMS

SUSY

- Two data-driven methods
 Cut \$ count:
 - pT(II) used to predict
 pT(vv); binned in HT
- Search for kinematic edge in m(11)
 - e model bkg using ex data

- Two data-driven methods
 - Cut & count:
 - pT(LL) used to predict pT(vv); binned in HT # MET
- Search for kinematic edge in m(11)
 - model bkg using ex data

‡ Fermilab SUSY $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.7 \text{ fb}^{-1}$ **CMS Preliminary** CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, $\int Ldt = 4.7 \text{ fb}^{-1}$ OS Dileptons $H_T > 300 \text{ GeV}$ ee 600 10² [GeV] μμ observed $tan(\beta)=10$ **▲ e**μ 550 LEP2 \widetilde{l}^{\pm} $A_0 = 0 \text{ GeV}$ observed (±1 σ theory) $\mu > 0$ expected (±1\sigma stat) 10 LEP2 $\widetilde{\chi}_{1}^{\pm}$ 500 • pred $m_{t} = 173.2 \text{ GeV}$ low H₊ observed 2010 high H₊ 🗢 obse 450 CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, $\int L \, dt \, 4.7 \, fb^{-1}$ high E_Tmiss 100 $m(\tilde{g}) = 1000$ 400 $m(\tilde{q})$ 350 CMS Pre 1000 1200 Entries / 10.0 GeV 25 = 2500H_T (GeV) √s = 7 Te\ 1500 300 4.7 fb⁻¹ 20 served II) prediction 250 prediction educible (MC) 15 $m(\tilde{g}) = 500$ al Uncertainty 200 NOEWSB 10 150 100 3000 500 1000 1500 2000 2500 50 m_o [GeV] $300 > H_T > 125$ 505-22-022 $E_{\tau}^{miss} > 275$ 37

-200

200

JZB [GeV]

400

600

800 1000 1200

gluino mass [GeV]

600

- · Compressed spectra -> Low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est. method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

OS Dileptons with ANN

- · Compressed spectra -> Low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est. method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

Compressed Spectra scenario -> Low MET

- · Compressed spectra -> low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est. method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

- · Compressed spectra -> Low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est. method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

- · Compressed spectra -> Low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est, method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

- · Compressed spectra -> Low MET
- Use MVA to relax MET requirements
- Improves signal acceptance in "difficult to find" regions by factors
- · Hybrid MC+data-driven bkg est. method
 - MVA output determined in sideband
 - MC used to transfer MVA to Signal R.

SS Dileptons

• SM backgrounds highly suppressed.

SS Dileptons

SM backgrounds highly suppressed.
Challenge is to measure fake leptons!

SS Dileptons

- SM backgrounds highly suppressed.

 Challenge is to measure fake leptons!
- Two data-driven methods
 - B tag-and-probe method
 - "Tight-Loose" method

TL ratio:
$$R_{TL} = \frac{leptons\ passing\ analysis\ selection}{leptons\ passing\ loose\ selection}$$

Measure RTL in independent QCD dominated Control Sample

SS Dileptons

- SM backgrounds highly suppressed.
 Challenge is to measure fake leptons!
- Two data-driven methods
 - B tag-and-probe method
 - · "Tight-Loose" method
- Define Signal Regions in MET & HT

SS Dileptons

- SM backgrounds highly suppressed.
 Challenge is to measure fake leptons!
- Two data-driven methods
 - B tag-and-probe method
 - · "Tight-Loose" method
- Define Signal Regions in MET & HT

SS Dileptons + 2b-jets

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - Same-sign top production
 - SUSY 4 top final states
 - · SUSY sbottom pair production
 - SUSY 4b4W final states

5115-12-020

SS Dileptons + 2b-jets

Similar to SS dilepton analysis: just add 2 b-tagged jets

• Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

- · More e
 - @ Same
 - e SUSY
 - e SUSY
 - e SUSY

			,				
	SR1	SR2	SR3	SR4	SR5	SR6	SR7
No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3
No. of btags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3
Lepton charges	++/	++	++/	++/	++/	++/	++/
$ \not\!\!E_{ m T} $	\geq 30 GeV	≥ 30 GeV	≥ 120 GeV	$\geq 50\mathrm{GeV}$	\geq 50 GeV	$\geq 120~{ m GeV}$	≥ 50 GeV
H_{T}	$\geq 80~{ m GeV}$	$\geq 80 \text{ GeV}$	≥ 200 GeV	$\geq 200\mathrm{GeV}$	≥ 320 GeV	\geq 320 GeV	≥ 200 GeV
q-flip BG	1.1 ± 0.2	0.5 ± 0.1	0.05 ± 0.01	0.3 ± 0.1	0.12 ± 0.03	0.026 ± 0.009	0.008 ± 0.004
Fake BG	3.4 ± 2.0	1.8 ± 1.2	0.32 ± 0.50	1.5 ± 1.1	0.81 ± 0.78	0.15 ± 0.45	0.15 ± 0.45
Rare SM BG	3.2 ± 1.6	2.1 ± 1.1	0.56 ± 0.28	2.0 ± 1.0	1.04 ± 0.52	0.39 ± 0.20	0.11 ± 0.06
Total BG	7.7 ± 2.6	4.4 ± 1.6	0.9 ± 0.6	3.7 ± 1.5	2.0 ± 0.9	0.6 ± 0.5	0.3 ± 0.5
Event yield	7	5	2	5	2	0	0
N_{UL} (12% unc.)	7.4	6.9	5.2	7.3	4.7	2.8	2.8
N_{UL} (20% unc.)	7.7	7.2	5.4	7.6	4.8	2.8	2.8
N _{UL} (30% unc.)	8.1	7.6	5.8	8.2	5.1	2.8	2.8

SS Dileptons + 2b-jets

 Similar to SS dilepton analysis: just add 2 b-tagged jets

• Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

• Similar to SS dilepton analysis: just add 2 b-tagged jets

 Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

• Similar to SS dilepton analysis: just add 2 b-tagged jets

 Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search

41

16.03.2012

SUSY

SS Dileptons + 2b-jets

• Similar to SS dilepton analysis: just add 2 b-tagged jets

 Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

 Similar to SS dilepton analysis: just add 2 b-tagged jets

 Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

 Similar to SS dilepton analysis: just add 2 b-tagged jets

 Fake lepton background from b's dramatically smaller!

• top contribution expected to decrease by factor of 2!

SS Dileptons + 2b-jets

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search

SS Dileptons + 2b-jets

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search

Multi-Leptons

- adding additional leptons · removes all QCD backgrounds
 - fake lepton bkgs important
- · Sensitive to
 - · Direct EWK gaugino production
 - GGM slepton co-NLSP models
 R-Parity Violating models

LHC Physics Center

10⁻²

0

20

60

40

80

120

100

photons

- two selections:

 - Y + 2 jets + MET > 100 GeV YY + 1 jet + MET > 50 GeV

140 160 180

⊭_⊤ [GeV]

- two selections: • Y + 2 jets + MET > 100 GeV • YY + 1 jet + MET > 50 GeV

QCD Background

- real photons or fakes from jets
- MET estimated from control reg.

 Y: reweight with "photon" pt • YY: normalise to YY at low MET

photons

- two selections:
 - Y + 2 jets + MET > 100 GeV e yy + 1 jet + MET > 50 GeV

QCD Background

- real photons or fakes from jets • MET estimated from control reg.
- Y: reweight with "photon" pT • YY: normalise to YY at low MET

Electron Background

- · fake y from e in W decays: real MET
- use measured e → y fake rate
- other bkgs taken from simulation

505-12-001

photons

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

SUS-12-001

photons

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

SUSY

SUS-12-001

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- · Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- · Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- · Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

SUSY

SUS-12-001

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

SUSY

SUS-12-001

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- · Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP

CMS

SUSY

SUS-12-001

- interpretation in general gauge mediation (GGM)
 - gravitinio as LSP
- · Pheno driven by NLSP
 - simplified model with bino-like & wino-like neutralino LSP
- Also interpreted in a UED context

Dilepton Resonances

- Bump hunting in the DY tail
 - · No QCD; Very clean
 - · Sequential SM Z' < 2.3 TeV excluded

Dilepton Resonances

- Bump hunting in the DY tail
 - No QCD; Very clean
 - Sequential SM Z' < 2.3 TeV excluded

Dilepton Resonances

- · Bump hunting in the DY tail
 - · No QCD; Very clean
 - Sequential SM Z' < 2.3 TeV excluded

3.2 TeV excluded

Dijet Mass (GeV)

‡ Fermilab Exptic Boosted Tops University of Illinois at Chicago ttbar Resonances · Hadronic t decay: three jets; · Boosted: merge to single fat jet · Apply Jet sub-struct: • two sub-jets: m(W) • three sub-jets: m(t) EX0-11-006 46

Exotic Boosted Tops

‡ Fermilab University of Illinois at Chicago

ttbar Resonances

- · Hadronic t decay: three jets;
- · Boosted: merge to single fat jet
- Apply Jet sub-struct:
 two sub-jets: m(W)

 - three sub-jets: m(t)

‡ Fermilab Exotic Boosted Tops University of Illinois at Chicago ttbar Resonances CMS Preliminary, 4.6 fb⁻¹ √s = 7 TeV · Hadronic t decay: ≨ 140 m_{w}^{DATA} three jets; $= 83.0 \pm 0.7 \text{ GeV/c}^2$ ഥ 120 · Boosted: merge to $= 82.5 \pm 0.3 \text{ GeV/c}^2$ vents 80 Data single fat jet Top Apply Jet sub-struct: two sub-jets: m(W) W+Jets 60 F QCD — Data fit • three sub-jets: m(t) 40 --MC fit 20 -100 120 140 160 180 200 EX0-11-006 Mass of W-Jet Candidate (GeV/c²) CMS preliminary, 4.6 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ Observed QCD background estimate tt simulation $Z'(1 \text{ TeV/c}^2) \sigma = 4.5 \text{ pb}$ $Z'(1.5 \text{ TeV/c}^2) \sigma = 0.59 \text{ pb}$ Events $Z'(2 \text{ TeV/c}^2) \circ = 0.1 \text{ pb}$ $Z'(3 \text{ TeV/c}^2) \sigma = 0.014 \text{ pb}$ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Type $1+1 \text{ t\bar{t}}$ mass (GeV/c²) 46

Exotic Boosted Tops University of Illinois at Chicago ttbar Resonances CMS Preliminary, 4.6 fb⁻¹ √s = 7 TeV · Hadronic t decay: ≥ 140 mwDATA three jets; $= 83.0 \pm 0.7 \text{ GeV/c}^2$ ഥ 120 $= 82.5 \pm 0.3 \text{ GeV/c}^2$ · Boosted: merge to ents ents Data single fat jet Top Apply Jet sub-struct: two sub-jets: m(W) W+Jets 60 F QCD — Data fit • three sub-jets: m(t) 40 --MC fit 20 100 120 140 160 180 200 EX0-11-006 Mass of W-Jet Candidate (GeV/c²) CMS preliminary, 4.6 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ CMS Preliminary, 4.6 fb⁻¹ at $\sqrt{s} = 7$ 10% Width Assumption Observed (95% CL) Observed QCD background estimate SH Expected (95% CL) tt simulation 10 $Z'(1 \text{ TeV/c}^2) \sigma = 4.5 \text{ pb}$ ± 1 s.d. Expected $Z'(1.5 \text{ TeV/c}^2) \sigma = 0.59 \text{ pb}$ Events $Z'(2 \text{ TeV/c}^2) \circ = 0.1 \text{ pb}$ ± 2 s.d. Expected $Z'(3 \text{ TeV/c}^2) \sigma = 0.014 \text{ pb}$ Topcolor Z', 10.0% width, Harris et al-10⁻¹ 10⁻² 500 1000 1500 2000 2500 3000 3500 4000 4500 5000³ 2.5 1.5 Type $1+1 \text{ t\bar{t}}$ mass (GeV/c²) tt Invariant Mass (TeV/c²) 46

‡ Fermilab

Exotic Particles Decaying to WZ

Models

- Sequential SM: W' to WZ to 3L + V
- · Technicolor: technihadrons ptc, TTC bound states of new strong interaction, PTC to WZ to 31 +V

Event Reco; Bkg Rejection

- W boson reco: 2-fold ambiguity; choose smaller |pvz| (75% correct)
- MET requirement (due to v)
- Reject 41 events consistent with ZZ hypothesis
- · Limit mass dependent scalar sum $H_T = \Sigma(p^L_T)$

Exotic Particles Decaying to WZ

Models

- Sequential SM: W' to WZ to 3L + V
- · Technicolor: technihadrons ptc, TTC bound states of new strong interaction, ptc to WZ to 31 +v

Event Reco; Bkg Rejection

- W boson reco: 2-fold ambiguity; choose smaller |pvz| (75% correct)
- MET requirement (due to v)
- Reject 41 events consistent with ZZ hypothesis
- · Limit mass dependent scalar sum $H_T = \Sigma(p^l_T)$

Direct Detection

Monophoton + MET

Collider Searches

vector: spin-independent (SI)

Bai, Fox, Harnik, JHEP 1012:048(2010)

axial-vector: spin-dependent (SD)

$$\mathcal{O}_{AV} = rac{(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

CMS

Dark Matter Detection in CMS

Monojets

- Large MET;
 Nj = 1 or 2;
 Δφ(j1,j2) < 2.5
 Data-driven bkg
 Z->VV via μμ
 - W->LV via SB

GeV CMS Preliminary W→lv L dt = 4.7 fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$ 25 QCD 10⁴ Z→I⁺l⁻ 10³ ADD M_D2δ3 10^{2} 10 1 200 400 600 800 1000 E_T^{miss} [GeV]

Monophotons

High pt, central,
 isolated y;
 large MET;
 central jet veto
 Backgrounds

- Data-driven
- Monte Carlo

Exotica Summary

SUMMARY

- · CMS had a banner 2011!
 - more than 40 new results sent to winter conferences:
 Standard Model, B-physics, Top, Higgs, SUSY, Exotica
- Will 2012 be the year that the Standard Model finally breaks?
 - · Rule out SM Higgs? Rule out SM Bs -> µµ?
 - · Incontrovertible proof of New Physics!
- · Or, will the Standard Model triumph yet again?
 - Discover SM Higgs! Discover SM Bs -> μμ!
 - Both Represent tremendous discoveries;
 Cumulation of scientific thought from the previous century!
- · Or, will will we ...
 - · Discover Higgs & SUSY?
 - · A true renaissance!
- · We are in the midst of an amazing time in science!
 - A cross-road, sure to change our understanding of nature in fundamental ways!

Acknowledgements

· Many thanks to

- Adi Bornheim, Ben Hooberman, Georgia Karapostoli,
 Steven Lowette, Marco Pieri, Lars Sonnenschein, Steve Worm
- And to the many others who contributed to CMS results to Moriond!

Standard Model

GeV

Events/2

70 CMS Preliminary

 $\sqrt{s} = 7 \text{ TeV}, L = 2.1 \text{ fb}^{-1}$

Dimuon sample

Data

tt

DY+jets

SMP-12-003

Z+bb

- Important QCD Measurement
- Benchmark channel (\$ bkg) for Higgs search
- · Simulation: ME+PS using MadGraph+Pythia
- Data unfolded to hadron-level

Multiplicity bin	ee	μμ
$\sigma_{hadron}(Z+1b,Z\rightarrow\ell\ell)(pb)$	$3.25 \pm 0.08 \pm 0.29 \pm 0.06$	$3.47 \pm 0.06 \pm 0.27 \pm 0.11$
$\sigma_{hadron}(Z+2b,Z\rightarrow\ell\ell)(pb)$	$0.39 \pm 0.04 \pm 0.07 \pm 0.02$	$0.36 \pm 0.03 \pm 0.07 \pm 0.03$
$\sigma_{hadron}(Z+b,Z \rightarrow \ell\ell)(pb)$	$3.64 \pm 0.09 \pm 0.35 \pm 0.08$	$3.83 \pm 0.07 \pm 0.31 \pm 0.14$

Observation of pp > Z > 41

B_s→μμ Candidate

Monophoton Event

Monophoton Event

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

Lumi section: 604